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Eleven Great Problems of Mathematical

Hydrodynamics

V. I. Yudovich

The prince in person led his troops
to attack eleven times. Alexander Dumas.

Eleven times the foolhardy battalion
attacked the enemy. Nikolay Tikhonov.

1 Introduction

Regardless of the fact that this paper was written on the other occasion, I
respectfully dedicate it to Vladimir Arnold. An interviewer once asked me
whether I have heroes in mathematics. I said that I have just heroes ,not
gods, and first mentioned Arnold. His unique ability to respond to all alive
and new in mathematics and physics by unexpected and stimulating ideas, his
impeccable mathematical taste, his extraordinary penetrating power, making
us to recall classics, his remarkable gift to point out the research directions
promising maximal results — all this made him one of the world leaders in
modern mathematics.

This is a slightly extended version of a talk that was given at the Con-
ference on mathematical hydrodynamics at Hull University, UK, on the 10th
April 2001. This talk was also repeated at the Newton Institute, Cam-
bridge, on the 23rd April 2001. The title of this paper was suggested by
V. A. Vladimirov, who invited me to participate at the conference in Hull.
“Why exactly eleven ?”, I asked him. “For no particular reason”, he replied.
“Hilbert pointed out 20 problems, and Smale pointed out 19, but these re-
ferred to mathematics in general... Well, if you do not like it, we can change
the title.” However, I liked the number 11. It is not as common as, for in-
stance, 12 or 7. Besides, I recalled that some of my favorite authors mention
this number while talking about battles and attacks. During the talk, I was
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reminded that a football team consists of 11 players. More recently, I read
in Kazantsev’s article in Shahmatnoe Obozrenie (Chess Review) 2, 2001, that
“11, according to investigations of V. I. Avinsky, a founder of alphametrics,
is a module of the Universe involved in all dimensions of both micro- and
macro-worlds.” So, this is an intriguing number and let it stay in the title,
although one shouldn’t take it too seriously. As a matter of fact, there is
actually a greater number of problems and almost all of them split into even
more new problems. While choosing the 11 problems for this list I tried to
use the following criteria:

1. The solution of the problem should bring us to a new level of under-
standing of fluid dynamics, or at least help to explain a sufficiently wide
range of hydrodynamical phenomena.

2. In general, it is impossible to solve the problem with any known method.
We need some new ideas and approaches which will probably give rise
to new mathematical theories and promote the improving art of the
description of natural phenomena.

3. Again quoting S. Smale [1], “We believe that the questions, their so-
lutions, partial results, or even attempts to solve them are likely to be
of great importance for mathematics and its development in the next
century.”

4. I spent a good amount of time trying to solve the problem and know
some things about it. At the very least, I now know of several approaches
that do not lead to the desirable results.

As a result almost all of the problems in this list deal with incom-
pressible homogeneous ideal and viscous fluids. However, some others were
excluded from the list only for the sake of brevity. Those were different
problems concerning compressible fluids, nonhomogeneous fluids, asymptotic
models of convection, magnetohydrodynamics, multi-component and espe-
cially infinite-component media, analytical dynamics and differential geome-
try of continuous media, different problems with the unknown and particu-
larly free boundaries, etc. Some of those omitted still satisfy all of the above
four criteria, and I hope to return to them in future publications.

Of course, it would be desirable that a problem be formulated in a
mathematically rigorous manner. However, this is unfortunately not always
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possible. I suppose that a physical problem cannot be formulated completely
until it is resolved. Only a beautiful solution will eventually confirm the
correctness of the problem’s initial statement.

Many of the problems discussed below are well-known, while some of
them are rather new. In the current mathematical literature, one can find
solutions for probably all known problems, especially for those where the hy-
pothetic result is sufficiently clear and needs only to be rigorously justified.
According to Francois Rabelais, “every respectable citizen should believe ev-
erything he is told and everything which is published.” In mathematical hy-
drodynamics, this great principle should be applied carefully since too many
published proofs are erroneous.

The following is a list of problems with some comments. The first two
problems concern the fundamentals of mathematical physics and are not part
of the list of eleven great problems in fluid dynamics.

2 Mathematical Models of Hydrodynamics.

Problem G1. Construct mathematical models of continuous media including
phase transitions (boiling water, ferroelectrics which can turn into dielectrics,
liquid crystals, etc.).

This is mainly a question of the correct mathematical statement of the
initial boundary-value problem under conditions when a continuous medium
can undergo phase transitions in unknown a priori moments and in unknown
a priori regions of space occupied by it. For example, it is necessary to learn
how to describe the flow of water under conditions when its temperature
changes within the interval containing one or several points of phase transition
(freezing — melting, boiling — condensation, or triple critical point of the
equation of state nearby which all three phases can coexist). This problem
belongs as much to physics as to mathematics, since the interpretation of
the phase transitions is still an unsettled area of physics. Current physical
journals regularly publish works on the fundamentals of this theory (see for
example [2]).

Available phenomenological models of liquid-gas mixture and boiling
water are rather rough, while it would be interesting to obtain the appropriate
equations starting from the “first principles” of statistical thermodynamics.
By the way, the possibility of transition of water into ice reminds us once
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again about the impossibility to establish the partitions between the natural
sciences once and for all, since such partitions do not exist in nature.

Interfaces arising at phase transitions very often turn out to be unstable
and waves appear on them. A number of interesting problems are connected
with these phenomena; many of them do not even require the creation of new
methods and are quite accessible to investigation. I recall the experiment
conducted by Rostov physicists (Fridkin and Grekov) [3] as long ago as the
1970s. The edges of a rod made of ferroelectric material (such as barium
titanate) were kept at constant temperatures. The temperature on one edge
was lower than the Curie point and on the other was higher. One could expect
that the part of the rod close to the hot edge would be in dielectric phase
and the cold part would be in ferroelectric phase. In general the experiment
confirmed these expectations, but the point of interface started to oscillate
along the rod. As far as I know, appropriate theory of this phenomenon was
never constructed.

Another example: it is doubtless that a flat boundary between water
and ice while freezing or melting is often unstable. It would be of interest
to investigate spontaneous waves appearing on such a boundary. It would
also be of great interest to consider parametrically excited waves generated
by oscillations of outer temperature and pressure. The results may become
significant for the investigation of glacier motions, formation and thawing of
icebergs, and freezing of water reservoirs. The obtained results can also be
applied in the development of practical methods for the destruction of ice
covers on rivers and lakes.

Problem G2. Determine the dependence of kinetic coefficients (vis-
cosity, thermoconductivity, diffusion, surface tension, permittivity, . . . ) on
thermodynamic parameters (temperature T , pressure p, density ρ, impurity
concentration c, . . . ).

It is very important to determine the restrictions on kinetic coefficients
imposed by the requirement of global solvability in basic evolution initial
boundary-value problems. I believe that it is possible to build up the gen-
eral theory of globally solvable systems of ordinary differential equations and
equations in partial derivatives. Of course, global existence of solutions to
initial boundary value problems is a very special physical property of the
system, since, as we know, there are some explosive continuous media which
can exist only within a limited period of time. Speaking in mathematical
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language, the possibility of collapse is a generic property, while the global
solvability is in a sense a degeneration. (Such is the eccentric mathematical
language — the most interesting and beautiful systems are called degenerate.)

3 Uniqueness, global existence and nonexistence

of a solution.

Problem 1. Global solvability and regularity of the solutions to the basic
boundary-value problems for 3D Euler and Navier-Stokes equations in the
case of homogeneous incompressible fluid.

There is no point in giving a detailed description of these well-known
problems even more so that recently I wrote an extensive article about them
[4]. However, it is worth noting that similar problems arise in many areas of
nonlinear mathematical physics. The situation in the 2D Euler and Navier-
Stokes equations is good enough since global theorems on the existence of
generalized and smooth solutions are known as well as rather strong unique-
ness theorems. That is why it is widely believed that only 3D problems are
difficult while 2D problems are not so hard to solve. As a matter of fact,
“2D or not 2D, that is not the question”. The issue here is not so much
two-dimensionality but the specific properties of the Euler and Navier-Stokes
equations, which make it possible to obtain strong a priori estimates of the
solutions. In the case of Euler equations this is the existence of the vortex in-
tegrals. In the case of Navier-Stokes equations this is the specific embedding
theorems for the function spaces that play the decisive role. Kinetic energy
in the 3D case is still a quadratic functional; however in order to follow in
a fashion similar to that for plane flows, one needs the velocity norm in L3

space (in the n-dimensional case we need Ln).
If we consider the generalized solutions of Euler equations with initial

velocity fields, which possess only finite kinetic energy, with no additional
assumptions on smoothness, then the advantage of the 2D case fails imme-
diately. The question of global solvability and uniqueness of the solution to
the basic initial boundary-value problem in the 2D case turns out to be as
complicated as for the similar 3D problem.
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Let us consider also the equations of ideal convection:

d~v

dt
= −~∇p+ θk̂ (where

d

dt
≡ ∂

∂t
+ ~v · ~∇), (1)

~∇ · ~v = 0, (2)
dθ

dt
= 0, (3)

vn

∣∣
∂D

= 0, ~v
∣∣
t=0 = ~v0, θ

∣∣
t=0 = θ0, (4)

where ~v is the velocity field, p is the pressure, θ is temperature, k̂ is a unit
vector directed upwards, D is a bounded domain in R3 or R2; ~v0 ≡ ~v0(x),
θ0 ≡ θ0(x), x ∈ D, are initial velocity and initial temperature fields.

If θ0 = const, then θ(x, t) is constant for all x and t, and we face the
problem for Euler equations. Proof of the global existence theorem in the
class of smooth solutions is quite inaccessible for non-isothermal flows even
in the 2D case. The question of whether or not blow up is possible arises once
again. Two-dimensionality is of no use in this case, since the conservation
law for the vorticity in a fluid particle is no longer valid.

In the right way all these problems are stated informally: one should
find the proper definition of the (generalized) solution so that both the global
existence theorem and the uniqueness theorem can be proved.

Problem 2. Global existence theorems for stationary and periodic
flows.

After the classic works by J. Leray [7] and his successors (see, for in-
stance, [5]) the following two problems still resist the efforts of researchers.

Problem 2a. Global existence theorem for the solution to the 2D prob-
lem on the viscous fluid flow past a rigid body.
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The velocity at infinity is assumed to be given and equal to the pre-
scribed constant vector ~U (see Fig.1).

This problem goes back to the Stokes paradox. Stokes established that
in the linear case with the neglected term (v,∇)v the solution doesn’t exist.
This is in a sharp contrast with the existence of a 3D flow past a bounded
body, which result is very important from a practical point of view. The
Stokes solution for the slow flow past a sphere has numerous applications in
the natural sciences.

We could reverse the problem and consider translational movement of
the infinite rigid cylinder with a constant velocity −~U in the fluid which is
at the rest at infinity. Stokes’ result implies that in the course of time (as
t → ∞) all the fluid will start to move with the same velocity −~U and the
condition at infinity will be violated. The question is whether this result
will change if we consider the complete Navier-Stokes equations. It is worth
to notice that all the principal results for the Navier-Stokes equations were
obtained, so to say, in spite of nonlinearity. The results that we can get
more or less easily for linearized equations afterwards were extended ( while
struggling against nonlinearity!) to the complete equations. As for the 2D
flow problem the desired result must be obtained with the help of nonlinearity.
So far this has been done only for low Reynolds numbers [6].

Similar questions for non-translational motions of a body and for mo-
tions periodic in time still stay without proper investigation.

Problem 2b. Prove or disprove the global existence of stationary and
periodic flows of a viscous incompressible fluid in the presence of the interior
sources and sinks.

Let us consider the following steady-state boundary value problem for
the Navier-Stokes system. Let the flow domain D of R3 or R2 has a boundary
∂D consisting of connected components S1, S2, . . . , Sk. Let the velocity v be
prescribed along the boundary:

v|∂D = q, (5)

where q is a given vector field on the boundary. Then the incompressibility
condition (2) imposes certain restriction on the vector field q:

k∑
l=1

∫
Sl

qndS = 0, (6)
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(i. e. the total velocity flux through the boundary ∂D must be equal to zero).
Meanwhile, in the classic work by J. Leray [7] the global existence theorem
for the stationary flow was proved only for the more restrictive condition:∫

S1

qndS = . . . =

∫
Sk

qndS = 0, (7)

which coincides with the necessary condition (6) only in the case of a con-
nected boundary (i. e. k = 1). Condition (7) means that the fluid neither
enters the flow domain D from the interior domains bounded by the surfaces
S1, S2, . . . , Sk (we assume that Sk is the outer boundary of the flow domain),
nor leaves the domain D through these surfaces. So there are no interior
sources or sinks (more precisely, their sum is equal to zero).

It was necessary to impose the same boundary condition (7) on the
boundary field q(x, t) in order to prove the global existence theorem for pe-
riodic motions [8]. We face the following problem:

Prove (or disprove by constructing a counterexample) the global theorem
on existence of stationary and forced periodic motions of viscous incompress-
ible fluids in the case when the domain D in R2 or R3 has the boundary which
consists of the connected components S1, . . . , Sk, where k > 1 and only the
necessary condition (6) holds.

Here the boundary ∂D, the vector field q, and the external mass force
F (x) in the stationary case and F (x, t) in the periodic case are considered to
be C∞-smooth.

My feeling is that the result most likely is negative. If this is true, then
the necessary counter-examples can be constructed, probably even for the
simplest case of the concentric circular ring.

The exterior problems with the interior sources and sinks are also not
without interest. Some unusual phenomena related to the outer rotationally
symmetric flows are considered in [9].

In addition, I would like to note that condition (7) makes it possible
to prove the dissipativity of the non-stationary Navier-Stokes system [10].
When only the general condition (6) is valid, this result (except in the slow
flow case) will probably fail as well.

It seems to be possible that while the Reynolds number increases, the
stationary regime can disappear (i. e. move to infinity in the corresponding
function space ), when R → R∗, where the critical value of R∗ is finite.
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However, before disappearing, this stationary regime becomes unstable and
generates the self-oscillating periodic regime. Of course, there is a chance
that at first the branching in the class of stationary regimes takes place. It
would be interesting to examine the possibility of such kind march of events
at least with a numerical experiment.

4 General stability theory for viscous fluid flows.

Problem 3. Existence of unstable stationary and periodic flows in an arbi-
trary domain.

Let a = a(x) be a velocity field of a stationary flow of a viscous incom-
pressible fluid in a prescribed bounded domain D in R2 or R3. We assume a
to be a solution to the boundary-value problem for the Navier-Stokes system
with prescribed external forces and boundary velocity field. By linearizing
the Navier-Stokes equation on this basic flow and searching for a solution in
the form eσtu(x), we get the following spectral problem:

σu+ (u,∇)a+ (a,∇)u = −∇q + ν∆u, (8)

∇ · u = 0, (9)

u|∂D = 0. (10)

We call the stability spectrum of the main flow a ( denote by Σa) the set
of the complex numbers σ for which the problem (8)–(10) has a nonzero
solution. It is well-known that the stability spectrum of any flow is countable
and the corresponding system of eigenvectors and adjoint vectors is complete
[14].(Note that in the case of unbounded domain one should consider also the
continuous spectrum.)

Let us try to imagine the great future hydrodynamic stability theory
that has already solved all the fundamental problems and is able to entrust
with computers the investigation of particular flows, their stability and tran-
sitions. May be the following concepts will play an essential role in this
theory.

Definition 1. Let us call destabilizer D = D(D) the set of all smooth
solenoidal (div v = 0) vector fields a on the domain D such that the spectral
problem (8) -(10) has at least one eigenvalue σ0 on the imaginary axis:

D = D(D) = {a : ∇ · a = 0, ∃ σ0 ∈ Σa : Re σ0 = 0}. (11)
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Definition 2. Let us call bifurcator B = B(D) the set of all solenoidal
vector fields a on the domain D such that the stability spectrum Σa contains
the point 0:

B = B(D) = {a : ∇ · a = 0, 0 ∈ Σa}. (12)

Definition 3. Let us call oscillator O = O(D) the set of all smooth
solenoidal vector fields a on the domain D such that the stability spectrum
Σa contains at least one pair of complex conjugate numbers ±iω, ω 6= 0:

O = O(D) = {a : ∇ · a = 0, ∃ ω ∈ R, ω 6= 0, iω ∈ Σa}. (13)

Now let aλ = aλ(x) be a solenoidal vector field depending on the real
parameter λ. Assume that if λ = 0, this flow a0 = a0(x) is asymptotically
stable, and its stability spectrum is situated in the left half-plane. Then the
property of asymptotic stability is also preserved for small λ. Let us now
gradually increase λ (without loss of generality we can assume λ > 0). It is
possible that the flow aλ will be unstable for some λ. The critical values of
λ∗, which correspond to a transition of the eigenvalues from the stable half-
plane to the unstable one ( particularly those which separate the intervals of
stability and instability), are determined by the condition that the spectrum
Σa includes at least one point of the imaginary axis. In other words, the
critical values λ∗ are defined by the condition: aλ∗ ∈ D(D) (Fig.2). Of course
while we change the parameter λ, the curve {aλ} can cross the destabilizer
D several times.

If it is already known that the flow aλ loses its stability, the question
arises about the nature of the corresponding transition. Generically, the



11

answer depends mainly on the nature of the neutral spectrum (intersection
of the spectrum with the imaginary axis) of the critical flow aλ∗. If aλ∗ ∈
B(D), one can expect the branching of the stationary regimes. And if aλ∗ ∈
O(D), then (again generically) the Poincare-Andronov-Hopf bifurcation of
branching off the cycle (self-oscillatory periodic regime) takes place.

If we imagine that the sets D,B,O are stored in computer memory, then
in each particular case we need only to track up when the family {aλ} hits
them.

Let us state the problem in the following form.
Prove that for any domain D in R3 or R2 the sets D(D),B(D),O(D)

are nonempty.
So far this result is known only for rotationally symmetric domains in R3

[11]-[13]. Certainly, when it will be proved that the sets D(D),B(D),O(D)
are non-empty (which is the main property of any set), the questions on the
structure of these sets will arise. Each of them are likely to be stratified with
respect to the codimensions of the bifurcations arising when the family {aλ}
intersects them.

It would be natural to raise quite similar questions for periodic regimes
(for instance, of fixed period p). Besides the sets Dp,Bp,Op, which naturally
generalize the sets D,B,O, we need to include here the duplicator Dbp, i. e.
the set of all time-dependent solenoidal vector fields in the domain D that are
p-periodic in t and the corresponding monodromy operator has the multiplier
−1. The nonlinear perturbations of this critical situation lead generically to
the period doubling bifurcation.

Finally we notice that in the finite-dimensional case the definitions above
work fairly well. For example, it turns out to be possible to construct sets
similar to D,B,O for the Galerkin approximations to the Navier-Stokes equa-
tions (Yudovich V. I., On the bifurcators, oscillators and destabilizers of the
Navier-Stokes system. (in preparation)).

Problem 4. Completeness of the Floquet solutions system in the sta-
bility problem for periodic flows of viscous fluids.

Linearization of Navier-Stokes equations, on a known T−periodic flow
a(x, t) in the (bounded) domain D with a rigid boundary, produces a system
of equations with T -periodic coefficients. Searching for solutions of the form
eσtu(x, t), where the vector-function u is T -periodic, we obtain a spectral
problem with the complex parameter σ:
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∂u

∂t
+ σu+ (u,∇)a+ (a,∇)u = −∇q + ν∆u, (14)

∇ · u = 0, (15)

u|∂D = 0. (16)

The set of complex numbers σ for which this problem has a nonzero solution
is called the stability spectrum or Floquet spectrum of the flow a(x, t). Let
us note that if this spectrum contains a point σ, then it also contains a
countable number of points σ+ inω, ω = 2π/T , n ∈ Z. Along with eσtu(x, t),
solutions of the form eσt

∑n
k=0 t

kuk
m(x, t), m = 0, 1, . . . r are also referred to

as Floquet solutions. Here uk
m are T -periodic vector-functions, which are

called adjoint Floquet solutions, or generalized Floquet solutions (which is
extremely ambiguous).

Let us define the Hilbert space S2(D) as the closure of the set of all
C∞-smooth and compactly supported solenoidal vector fields on domain D

in L2(D)-norm. We formulate the following problem:
Prove that for any T -periodic solution a, the system of Floquet solutions

is complete, i. e. their values at t = 0 form a complete system in S2(D).
Let us introduce the monodromy operator UT of the linearized system, which
is obtained from (14)-(16) when σ = 0. By definition, for any solution u(x, t)
of this system we have UTu0 = u(·, T ), where u0 is the initial value: u0(x) =
u(x, 0). An equivalent statement of the problem is:

Prove that the monodromy operator UT has a complete system of eigen-
and adjoint vectors.

In the case of a stationary flow, the completeness of the normal modes
system was proved long ago by S.G.Krein (see [14]). The application of the
well-known Keldysh theorem plays the crucial role in this proof. The idea
is that for a = 0 we have the self-adjoint spectral problem, for which the
completeness of the eigenvector system can be derived in a standard way,
with the help of the Hilbert-Schmidt theorem. The terms that contain the
flow a form though not small, but in a sense a weak perturbation of the basic
self-adjoint positive-definite operator. This is what makes it possible to apply
the Keldysh theorem.

It is rather surprising that in the periodic case the Keldysh theorem is
non-applicable. Some results on the completeness of Floquet solutions were
obtained in the 1970’s by my PhD student A. I. Miloslavsky [15]. He instead
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applied the Dunford-Schwartz theorem [16], which also tells us that com-
pleteness of the root vector system is preserved under perturbation, though
it is based on quite different principles than the Keldysh theorem. The con-
ditions of this theorem prohibit the eigenvalues of the unperturbed operator
to come arbitrarily close to each other. This kind of behavior is typical for
the spectral boundary-value problems on the interval or on a plane domain.
However for the Laplace operator (and for the Stokes operator as well) in a
bounded domain D in Rm the eigenvalues λn grow like n2/m as n → ∞ and
for m ≥ 3 approach each other. It is due to this restriction that the desired
conclusion follows from Miloslavsky’s general theorems only in the cases of
total separation of variables when the problem is reduced to the second or-
der parabolic equation ( or system of such equations) with the coefficients
periodic in t and only one spatial variable. This class certainly includes a lot
of interesting flows, such as parallel flows in a circular pipe or in a channel,
time-periodic symmetric flows between two coaxial cylinders, etc.. But the
general problem turned out to be very complicated, and the difficulties here
are of a fundamental nature.

Concentrating our attention on that essential properties of the linearized
Navier-Stokes system, which we are really able to deal with, we come to the
following abstract statement of the problem.

Consider the following ordinary differential equation in the Hilbert space
H:

du

dt
+ Au = B(t)u, (17)

where A is a (constant) self-adjoint operator ( similar to the Laplace operator
−∆ or the Stokes operator −Π∆), and its inverse operator A−1 = G ( Green
operator) is completely continuous. The operator-function B(t) is t-periodic
with period T ; for any t it is subordinate to the operator A in the strong sense
which means that the operator-functions G1/2B(t) and B(t)G1/2 are bounded
and continuous in t with respect to uniform operator topology (generated by
the operator norm on H). More precisely, operator B(t) can be unbounded
and not defined everywhere, but its domain (dom(B(t)) should be everywhere
dense and contain the image of the operator G1/2. At the same time the
above mentioned operator-functions must be continuously extendable up to
the bounded and continuous operator-functions.

In the case B is constant, the completeness can be derived from the
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Keldysh theorem. Seemingly this result can be extended to operators B(t)
periodic in t. However, Miloslavsky constructed an example of an equation of
the form (17), with the bounded coefficient B(t), for which the monodromy
operator is quasi-nilpotent! This equation does not have Floquet solutions
at all. Note that the importance of the completeness property of the nor-
mal modes or of the Floquet solutions in the stability/instability problem is
strongly exaggerated by many authors. The fact that the equation (17) does
not have Floquet solutions indicates its overstability: each of its solutions
decays faster than any exponent as t → +∞, at least like e−kt ln t for some
k > 0, or even like e−ktα for some α > 1.

The example of Miloslavsky is of a rather abstract nature. It would
be very interesting to determine if this kind of overstability is possible for
parabolic partial differential equations and for the linearized Navier-Stokes
system. My guess is that this is not possible; it is more likely that over-
stability exists on some invariant subspace. The reason is that any pair
of differential operators with variable coefficients, say, of orders m and n,
“almost commute”, their commutator “loses the order”. This differential op-
erator is of order less than m+n. On the other hand, for the commuting (in
the natural sense) operators A and B(t) the conclusion on the completeness
certainly holds.

I would also like to refer to the paper [18], where an example is con-
structed of a parabolic equation of the form ∂u

∂t −∆u = q(x, t)u on the torus
T 3 with the coefficients bounded with respect to x, t. In this example the
equation has some solutions decaying like e−ct2, c > 0 as t→ +∞. However,
the issue remains open whether or not such a fast damping is possible when
the function q is periodic in t?

There exists a class of equations (17) with the self-adjoint and strictly
positive monodromy operator . These are equations for which the condition
([12, 13]) is satisfied:

B∗(−t) = B(t). (18)

In this case the monodromy operator of equation (17) certainly has an or-
thonormal eigenbasis. Unfortunately, only a few rotational periodic fluid
flows and periodic convective flows of a stratified fluid lead to the equations
of the form (17) with the condition (18) satisfied.
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5 Stability of ideal fluid flows.

Problem 5. Justify the validity of linearization in the problem on instabil-
ity of a stationary flow of an ideal incompressible fluid with respect to weak
norms.

Instability must be understood as a lack of Lyapunov stability. The
definition of Lyapunov stability uses the norm on the function space of
solenoidal vector fields, tangent to the boundary of the flow domain. The
answer to the stability question depends crucially on the choice of this norm
[14, 19, 20, 21, 22]. There exist strong reasons to believe that all the flows of
ideal incompressible fluid are unstable with respect to “strong” norms, such
as maxx |∇ × v(x, t)| + . . . - in 3D−case and maxx |∇(∇ × v(x, t))| + . . .

— in 2D-case. Here the dots stand for weaker norms, for instance L2-norm.
Although this statement in its general form still remains a hypothesis, a large
number of examples and theorems, relating to various types of flow, strongly
confirms its correctness. Apparently, even solid rotation of a fluid is not an
exception.

Everything convinces us that even Lp-norms of a curl in the 3D-case
and its Cλ-norms in the 2D-case also grow infinitely as t→∞ for very wide
classes of flows. These classes are likely to be so wide that no stationary flow
exists that is Lyapunov stable with respect to these norms.

In 2D-case the known global existence theorem suggests the natural
choice of the norm. It is the norm in the space V of solenoidal vector fields
in the domain D ⊂ R2 with a bounded vortex:

‖ v ‖V = ess max
x∈D

| ∇curl v(x) | + . . . (19)

Here again dots denote a minor norm. The norm of the vector field v(x, t) in
the space V is estimated uniformly in t ∈ R [26]. This is the strongest norm
that is still uniformly bounded for all t ∈ R.

In any case, it is obvious that the stability and instability definitions are
of interest only when stable flows exist. It is easy to check that flows with
constant vortex are Lyapunov stable in the space V .

In the 3D-case the “right” choice of norm is obscure, at least because we
do not know of any global existence theorem for the initial boundary-value
problem. At the same time, in the case of Lyapunov stability, according to
the definition, the motion in the presence of small initial perturbations must
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be defined for any t > 0. That is true, in principle this does not prevent us
from treating the collapse (or going of the motion to infinity for a finite time)
as the special case of instability. May be we’ll have to soften the definition of
the Lyapunov stability admitting only smooth perturbations from some set
which should be everywhere dense in the chosen function space. Somehow
or other, for the moment there are only two reasonable candidates for the
role of the “right” norm, namely C-norm and L2-norm. In deciding of the
problem 5 another choice is of course possible, however, the norm must be
weaker than max | curl v | in the case of 3-D flows.

At present only one general result on the justification of linearization
in the stability problem for stationary flows of ideal incompressible fluid is
known [23]. However, in this work instability, for the case when the stability
spectrum contains a point of the right half-plane, was proved only for norms
which were much too strong. The other weakness of this article is the presence
of the additional restriction on the spectrum. This is the requirement for the
spectrum to contain a spectral set which lies entirely in the right half-plane (or
in fact a stronger requirement may be needed). I suppose this disadvantage
can be easily removed with the use of M. G. Krein’s [24] approach connected
with so called “almost eigenvectors”.

Problem 6. Justification of the Arnold’s method in the stability problem
for an ideal fluid flow.

In spite of the significant progress achieved with the application of the
V. I. Arnold’s method, beginning from his pioneering works of the middle of
sixties (see [25]), many fundamental questions of the theory remained in a
shadow and are still unclear.

Problem 6a. Prove the Lyapunov stability in the space V in the case
when the stationary flow satisfies the Arnold’s criterion.

Let me remind that in the case of a stationary flow with the stream
function ψ which satisfies the equation

ψ = F (∆ψ), (20)

this criterion requires that the quadratic form

H = H[ϕ] =
1

2

∫
D

[
(∇ϕ)2 +

∇ψ
∇∆ψ

(∆ϕ)2
]
dxdy, (21)

ϕ
∣∣
∂D

= 0. (22)
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be positive definite or negative definite.
With natural restrictions, V. I. Arnold proved the a priori estimate for

L2-norm of the vorticity perturbation ‖∆ϕ(·, t)‖L2(D). However, for initial
data of such kind, although we know the global existence theorem [26], there
is no uniqueness theorem. For uniqueness it is sufficient to assume that the
initial velocity belongs to V , i. e. ∆ϕ ∈ L∞(D) (see also [27], where the
uniqueness is proved for some class of flows with unbounded vorticity). So
the stability in this space is proved only in some impaired sense: even if there
are many perturbed flows (corresponding to the same initial data) all of them
are very close to the basic stationary flow. In a natural way, the following
problem arises.

Problem 6b. Prove (or disprove) the uniqueness of the solution to
the basic initial boundary value problem for the Euler equations in a bounded
domain D for the case when the initial vorticity belongs to Lp(D) for some
p > 1.

So far we have to acknowledge that the Lyapunov stability in the space
V is proved completely only for the flows with constant vorticity. By the way,
for such kind of flows the form (21) is not defined and the result about stability
is obtained directly. It is time to note that by no means all stationary flows
satisfy the equation of the form (20) with a univalent and smooth function
F . Generally, a stationary flow is defined by the equation

D(ψ,∆ψ)

D(x, y)
= 0, (23)

i. e the requirement that ψ and ∆ψ were functionally dependent. For in-
stance, the starting hypotheses of Arnold are broken for the stream function
defined uniquely by means of the boundary value problem

−∆ψ = −ψ3 + 1, (24)

ψ
∣∣
∂D

= 0.

In this case ψ = 3
√

∆ψ + 1, so the function F exists but it is not smooth.
Another example in which generally there doesn’t exist any univalent function
F : the function ψ satisfies the equation

ψ2 + (∆ψ)2 = 1 (25)

and the boundary condition ψ
∣∣
∂D

= 0.0 The stability problem for such kind
flows remains completely uninvestigated.
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Problem 6c. Investigate the stability of the flows (24), (25) and similar.
It is most likely that all flows which do not admit a univalent function F are
unstable. Thereupon I would like to draw attention to the works [28, 29]
where it was proved that the solution of the problem about maximum of the
kinetic energy on the set of isovortical vector fields leads to the flows with
univalent dependence between ψ and ∆ψ.

Further, it is important in principle to develop the Arnold approach,
which is a special form of the direct Lyapunov method, as applied to the
instability problem.

Problem 6d. Prove the instability of a stationary flow in the case
when the Arnold criterion is roughly violated.

Seemingly, everything confirms the opinion of the famous author that his
criterion is “close to necessary” (see, for instance, [30]). However, as a matter
of fact, in hydrodynamics it is very rare for instability to be established using
the direct Lyapunov method. A kind of exception is given by the results of
V. Vladimirov [31] obtained with the use of virials in the problems relating
to the motion of a body in a fluid.

It is a pity that the beautiful criterion for the stability of a three-
dimensional stationary flow obtained by Arnold, as it was expected by its
author, turned to be inapplicable to any flow excepting, may be, the rigid
rotation.

Problem 6e Does a stable three-dimensional stationary flow of an ideal
incompressible fluid exist?

It is likely that even rigid rotation is unstable with respect to strong
norms, for instance with respect to the vorticity norm max |curl v| + . . ..
Thus, if the stable flow does exist we still need to explain in what sense (in
what function space, etc) it is stable.

6 Stability of the simplest laminar flows and first tran-

sition.

Problem 7. Prove that the Hagen-Poiseuille flow in a circular pipe as well
as the Couette flow in a channel are absolutely stable (i.e. stable at any
Reynolds number).

This time we are dealing with the strictly formulated spectral boundary
value problems for ordinary differential equations (see, for instance, [32]). In
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the case of the Poiseuille flow, confining ourselves to axisymmetric perturba-
tions, we should prove that all eigenvalues σ of the following spectral problem
are located in the left half-plane Rσ < 0:

{(L− α2)− [σ + iαR(1− r2)]}(L− α2)ψ = 0, (26)

ψ = ψ′ = 0, r = 1, (27)

where α is the wave number of the perturbation, R is the Reynolds number, σ
is a complex parameter and the function ψ = ψ(r) is defined on the segment
[0, 1]. The second order differential operator L is defined by the equality

L =
d2

dr2 +
1

r

d

dr
− 1

r2 =
d

dr

(
d

dr
+

1

r

)
(28)

There is no boundary condition at r = 0 and it is easy to understand why: the
points of the axis of the pipe are interior for the initial problem in the cylinder
and there are no singularities at them. Instead of a boundary condition we
state the “boundedness condition” coming from the requirement that the rate
of energy dissipation is finite (or that the velocity field belongs to the class

W
(1)
2 ). This condition has the form

1∫
0

(
|(L− α2)ψ|2 + |ψ|2

)
rdr <∞. (29)

In fact we must also handle the corresponding spectral boundary value prob-
lems for non-axisymmetric perturbations. They are well-known (see [32])and
let me omit them here.

It is necessary to prove that for arbitrary real α and R all possible eigen-
values σ of the spectral problem (26)-(28) are situated in the left half-plane
Rσ < 0.

Subject to R = 0 (and arbitrary α) we have the self-adjoint boundary
value problem and all eigenvalues σ are negative(the equilibrium state is of
course asymptotically stable). Being guided by the results of the perturbation
theory and simple estimates of the σ-spectrum, it is easy to prove that the
eigenvalues cannot go to infinity for finite values of the Reynolds number R.
Hence, the absolute stability property is equivalent to the non-existence of a
critical values of the Reynolds number.
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We call critical the value R = R∗ such that there exists at least one
eigenvalue σ0 in the imaginary axis. It is convenient to express it in the
form σ0 = −iαcR with c the unknown real constant (the phase velocity
of the neutral perturbation). Thus, the absolute stability problem can be
formulated in the following form.

Prove that for any real α and R there exists only the zero solution of the
differential equation

(L− α2)2ψ − λg(r)(L− α2)ψ = 0 (30)

with the conditions (27), (28). Here we put

g(r) = 1− r2 − c; λ = iαR. (31)

Let us underline that only pure imaginary eigenvalues have physical
sense. Meanwhile if, instead of the boundary conditions (27), one takes the
conditions

ψ = Lψ = 0, r = 1, (32)

then one obtains the self-adjoint Sturm-Liouville boundary value problem for
the function ω = (L − α2)ψ. In this case all eigenvalues of the parameter
λ are real. This proves the absolute stability in the case of “soft” boundary
conditions (32).

The idea appears to watch the change of eigenvalues λ resulting from the
change of boundary conditions (27) into the conditions (32) and prove that
they remain real. If this were the case then the problem would be resolved.
Alas, this is true only in the case c 6∈ (0, 1). However for c ∈ (0, 1) the
boundary value problem (26), (28), (32) admits complex (unreal)eigenvalues
together with the set of real eigenvalues [33]. The fact that the phase velocity
c should lie in the interval of values of the velocity of the Poiseuille flow can
be obtained more directly from the integral estimates ([33]).

In the case of the Couette flow in a channel we come by the same way
to the following problem.

Prove the absolute stability of the plane Couette flow in a channel by
establishing that the boundary value problem

(D2 − α2)2u = iαR(y − c)(D2 − α2)u, D =
d

dy
, (33)

u = Du = 0 (y = ∓1) (34)
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on the segment [0, 1] has only zero solution for all real α and R.
It should be noted that beyond a shadow of a doubt the Poiseuille flow

in a pipe and the Couette flow in a channel are absolutely stable. This
statement is supported by repeated and very bulky calculations (that is true,
time and again “no doubt” statements turn out to be wrong). Moreover, for
the Couette flow “almost analytic” proof was constructed [34]. The numerical
part of this work was reduced to the checking of some, not so complicated,
inequality for the Bessel function.

However, I would like to believe that it is possible to construct some
beautiful algebraic-analytical proof. I imagine the general theorem which
imply without embarrassment the absolute stability of both flows. This the-
orem cannot be very general because it should be based on the rather deep
and special properties of the linearized Navier-Stokes equations. The point
is that for parallel flows in non-circular tubes, which are quite similar to the
Poiseuille flow, stability most likely can be lost already for finite values of
the Reynolds number. It would be desirable (and I hope not so difficult)to
prove this rigorously for the tubes with elongated rectangular and elliptic
cross-sections.

It is also interesting to note that for the Poiseuille-Couette flow in a
channel with the profile U(y) = ay + b(1 − y2), according to calculations
of several authors, absolute stability takes place not only for b = 0 (pure

Couette) but also for sufficiently small values of the parameter k =

∣∣∣∣ ba
∣∣∣∣,

say for k < k∗; for a = 0 we have the Poiseuille flow in a channel which
is unstable for large R. A really good theory should also predict the value
k∗ separating absolutely stable and unstable flows. The role of a computer
should be reduced to the calculation of the concrete values of the parameters
k∗ = k∗(α) and R∗ = R∗(α) for k > k∗(α).

Several other absolutely stable flows are known. This is, for example,
Couette flow in the case when only the outer cylinder is rotating. Another
example is given by the Kolmogorov spatially periodic flow with sinusoidal
profile in the case of a short longitudinal period. For these particular flows
the absolute stability is proved, and for the former even global (nonlinear)
stability takes place [36]. However, the problems on global nonlinear stability
and the development of turbulence still remain topical. We discuss these
problems below,in sections V and VI.
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Exchange stabilities principle.
When a parameter, on which the basic regime depends, arrives at its

critical value, generically, the following two basic variants can occur:either a
pair of complex conjugate eigenvalues appear on the imaginary axis or the
eigenvalue σ0 = 0. The term oscillatory instability is attributed to the former
case while with the latter we connect the term monotonous instability.

In the second case we also say that the monotonicity principle or the
exchange of stabilities principle takes place. The former term remained from
that (short) time when researchers believed that in viscous fluid dynamics
instability is always monotonous.

In several cases it turn out to be possible to prove the monotonicity
principle rigorously. I mention the free convection problem in which the
result was achieved by the reduction to the spectral problem for the self-
adjoint operator. For the spatially periodic Kolmogorov flow with the velocity
profile U = sin y the monotonicity principle was proved in [35] with the
help of explicit analytical considerations based on the possibility to express
the characteristic equation by means of the continued fractions. For several
special steady and periodic in t rotational flows, the monotonicity principle
was established in [12, 13]. Sometimes in order to justify the monotonicity
principle we can apply the theorem on the positive leading eigenvalue of a
positive linear operator (Perron-Frobenius-Ientch-Rutman-M.G. Krein).

However, in the most interesting hydrodynamical case of the Couette-
Taylor flow between the co-rotating rigid cylinders the principle is still not
justified. The following mathematical problem is not resolved.

Prove that for an arbitrary α ∈ R the minimal critical Reynolds number
R of the spectral boundary value problem

(L− α2)2u− σ(L− α2)u = 2α2Rω(r)v, (35)

(L− α2)v − σv = −λg(r)u, (36)

u = u′ = v = 0 (r = r1, r2) (37)

corresponds to the eigenvalue σ = 0.
Here r1, r2 are the radii of the cylinders, 0 < r1 < r2, α is the axial

wave number, the functions ω and g are expressed through the basic Couette
profile

v0 = v0(r) = Ar +
B

r
(38)
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by the equalities

ω(r) =
v0(r)

r
; g(r) = −

(
dv0

dr
+
v0

r

)
. (39)

The constants A and B are defined by the boundary conditions v0(r1) = Ω1r1,
v0(r2) = Ω2r2, where Ω1 and Ω2 are the angular velocities of the cylinders. At
that we should assume that ω(r) > 0 for r ∈ [r1, r2]) and the Synge condition
for instability A < 0 holds (for A > 0 stability takes place for all R, see [32]).

Repeated many times, calculations and natural experiments show us
beyond a shadow of a doubt that the monotonicity principle is true. In some
particular cases (narrow gap r2 − r1, close angular velocities Ω1 and Ω2)) it
was actually proved. However the rigorous proof for the general case is still
absent. Let me repeat, the problem here is not the mathematical rigor per se,
but it is necessary to understand the reasons of the phenomenon. Why self-
oscillations don’t appear at the first transition? When the desirable result
will be achieved, no doubt, it will enable us to decide, together with this
particular case, many other problems and first of all for the rotational flows
with profiles different from the Couette one (38).

Note that after the spectral problem (35)–(37) we must consider also
the spectral problems for non-rotationally symmetric modes depending on
the polar angle through the multiplier eimθ.

Existence of the infinite sequence of the critical values R1(α) < R2(α) <
. . ., going to infinity, at σ = 0 (and even for σ > 0) was proved by reduction to
the integral equation with an oscillatory (in the Gantmakher-Krein’s sense)
kernel [36]. Thus we’ll have the right to consider the problem as completely
resolved when it will be rigorously proved that, as R < R1, the entire σ-
spectrum (including its part corresponding to the non-symmetric modes, for
m 6= 0) is located in the left half-plane.

In the case of counter-rotating cylinders existence of monotonous in-
stability critical values corresponding to creation of the Taylor vortices was
proved in [37]. In this case however the monotonicity principle is not always
valid:for large angular velocities of the outer cylinder the first transition can
be connected with the appearance of the unstable oscillatory mode which is
not symmetric.

In Soviet times scientists often had to answer the question about the
economical effect of their results. They had to spin answers out of thin air.
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Figure 3:

However, in the case of the monotonicity principle this effect can be really
evaluated in roubles or pounds. The point is that researchers time and again
find themselves in a typical position described by Confucius. They have to
catch a black cat in a dark room, and in addition the cat is absent. The huge
work is necessary to get the result that oscillatory instability is impossible in
this or that situation. And as the only result the melancholic sentence appears
at the end of the paper: “Oscillatory instability is not found”. Moreover, as it
is impossible to get the absolute certainty, the following authors re-examine
the result again and again. Only the rigorous proof of the monotonicity
principle preserves us at one go from this Sisyphean toil and saves a lot of
human and computer time.

Problem 9. Instability “in the large” of the Poiseuille flow in
a pipe and the Couette flow in a channel (asymptotic bifurcation
theory).

How to achieve the agreement between the result on the absolute stabil-
ity of the Poiseuille flow in a circular pipe and the Couette flow in a channel
and, on the other hand, the results of experimentalists who, beginning from
Reynolds, report regularly about the observed instability and development of
turbulent regimes? In general the frame of the answer is discernible though
we are still far from the complete clarity. Most likely these flows, staying
stable “in the small” for all Reynolds numbers, are globally stable only for
sufficiently small R.However, beginning from some value of the Reynolds
number R these flows become unstable in the large. The reason of this is
that for R→∞ the domain of attraction is contracting to the point (at least
in one direction) corresponding to the basic flow itself. Events of such kind
happen, for instance, when some unstable equilibrium O′ is coming closer
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and closer to the given asymptotically stable equilibrium O (see Fig. 3) and
in the limit they merge together. Of course, it can happen that this is an un-
stable limit cycle or an even more complicated invariant set that approaches
the equilibrium O. There is also another variant for which the equilibrium
O is stuck in the limit into a separatrix trajectory (Fig. 4). The results of
computer experiments seemingly testify to the first variant (Fig. 3) though
the situation of Fig. 4 is more difficult to disclose and, may be, it will be also
found out.

Problem 9a. Prove that the Poiseuille flow in a pipe and the Couette
flow in a channel are unstable in the large.

It is very important to clarify the nature of this instability. If, indeed,
the situation of Fig. 3 is realized, then the question is what is the nature of the
unstable regime O′? The authors of the work [38] got over the huge computa-
tional difficulties and calculated the two-dimensional and three-dimensional
soliton-like stationary regimes near the Couette flow in a channel (see also
the references in this paper to the results of other authors on the existence
nearby the Couette flow of space-periodic regimes even at lower Reynolds
numbers). The results on intermittency of ”turbulent plugs” and zones of
the laminar Poiseuille flow in the transition interval of Reynolds numbers
also can serve as some evidence on existence of soliton-like solutions to the
Navier-Stokes equations.

Problem 9b. Prove that for sufficiently large Reynolds numbers there
exist stationary (plane and also periodic in the transversal direction)solutions
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to the Navier-Stokes equations tending to the Couette flow as |x| → ∞.
Problem 9c. Prove that there exist the solutions of the Navier-Stokes

system in a circular pipe of travelling soliton type tending to the Poiseuille
flow as z − ct→∞ (z is the axial variable, c is the phase velocity).

Problem 9d. Prove the existence of space-periodic and soliton-like,
stationary and periodic in time travelling waves tending, as R → ∞, to the
Poiseuille flow in a pipe and, respectively, to the Couette flow in a plane
channel.

It is most likely that all these problems 9a-9d will be resolved along
with the construction of the asymptotic bifurcation theory. I mean the case
when the critical Reynolds number is infinitely large: R∗ = ∞. The fact is,
of course, that R = ∞ is an essentially singular point for the Navier-Stokes
system. Therefore such theory should include the construction of boundary
layer (or may be other?) asymptotics of the secondary regimes merging with
the basic one as R→∞.

When this theory is built (no doubt it will happen!), many other ap-
plications will be found in hydrodynamics as well as in other branches of
mathematical physics.

7 Transitions and chaotic regimes.

Problem 10. Find and rigorously justify the existence of strange attractors
in the Navier-Stokes system and its nearest relatives (convection problem,
multi-component fluids, magnetic hydrodynamics, etc.)

In a series of hydrodynamical problems, with the use of natural and
computer experiments, we have already settled the chains of transitions lead-
ing from an asymptotically stable equilibrium (stationary motion) through
secondary equilibria, limit cycles and/or invariant two-dimensional tori to
complicated chaotic regimes. The treatment of experimental data was ob-
tained in the framework of ideas and images of the general bifurcations the-
ory. However, even in the case of ordinary differential equations, for the most
interesting cases this work was not carried through up to the strict check-
ing of the conditions of general theorems. During the last decades, several
prominent mathematicians even began to declare that in problems of such
kind the abilities of rigorous mathematical analysis are exhausted and hence-
forward we have to pin our hopes only on computer calculations. And even
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the realization of rigorous proofs has been entrusted with computers. It is
impossible to accept this point of view.

No doubt the direct numerical calculations always played a significant
role in the development of mathematics. Archimedes, however, not even for
a minute, thought it was sufficient to determine the volumes of a ball and
a cone by weighing. He followed up on developing his methods of calculat-
ing volumes up to the triumphant conclusion. Euler, Gauss, Ramanujan got
many of their discoveries, especially in number theory, as a result of extensive
calculations and observations. However their discoveries became the prop-
erty of mathematics only after the development of the corresponding rigorous
theories. The application of computers widened the scope of numerical ex-
periments utterly and now plays the decisive role in the investigation of the
processes described by differential equations.

Perhaps mathematicians never thought that literally everything in the
world must be justified with complete strictness. If we consider mathemat-
ics as a tool for investigating nature (for me this is only one but the main
its side), then its characteristic feature is the aspiration to get absolutely
reliable results. Meanwhile, very often it is sufficient to obtain results with
probability 0.99 or maybe even 0.6. High reliability is very expensive–for
instance, rigorous proof of the error estimates (“demonstrative calculations”
according to K. I. Babenko) requires much more computer time than even
the calculation itself.

It is not out of place to note that rigorous mathematical proofs give us
results with complete reliability, but... in the limit t → ∞ only. So many
times it occurred that falseness of proofs for important results (or may be
even of the results themselves) has been detected only years or even decades
later. I heard that about 30% of theorems which are publishing in journals
like “Comptes Rendus” or “Doklady Akademii Nauk SSSR” turn out to be
wrong.

It seems obvious that the most fundamental results supporting a great
deal in mathematics should be justified absolutely rigorously. Otherwise,
very quickly, the house of cards effect will convert our reasoning into taking
shots in the dark.

I admit that in future the rigorous justifications of results within com-
puters such that their verification is also accessible for computers only will
play the essential role, for example, in structural calculations in extremely
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important situations when human lives depend crucially on the work of the
device. However, mathematics has its “human side”. It is notable that
recently this was an essential reason to increase the NSF grants for mathe-
maticians.

Going back to our problem note that the highest chances to its reso-
lution are connected with asymptotic methods and methods of the bifurca-
tion theory. In particular, when investigating intersections of bifurcations in
the Couette-Taylor problem (viscous flow between rigid rotating cylinders)
the Navier-Stokes system is reduced to the amplitude systems on the central
manifold ([39, 40]). I performed extensive computer experiments with these
amplitude systems and found homoclinic bifurcations, the doubling cascades
of limit cycles, resonance breaking up of tori and probably other transitions
leading to the creation of various chaotic regimes. The original problem for
the Navier-Stokes equations is reduced to the investigation of the system of
ordinary differential equations of comparatively small order (sixth or eighth,
and after the further reduction, even of fourth and respectively fifth order).

Now it is just the moment to recall that there are fairly big gaps even in
the theory of ordinary differential equations. For instance S. Smale [1] states
the problem which, in a somewhat free exposition, sounds as

“Prove that there exists the Lorenz attractor in the Lorenz system”.
In fact, up to now the experimental observation of the Lorenz attractor

and the general existence theorems are not united:nobody has examined the
fulfilment of the general conditions for the special Lorenz system. I expect
that the further development of asymptotic methods will enable us to resolve
both this Smale’s problem and our problem 10, say, for the Couette-Taylor
problem. That is true, in the former case the analysis of the reduced system
should be supplemented with the proof that the found attractors sustain the
addition of (initially removed) higher order terms of the power series. This
technical problem seems quite surmountable, though we should be ready to
see that some of the observed attractors will disappear.

It is not so difficult to show other situations in fluid dynamics displaying
different degenerated bifurcations and predisposed to appearance of strange
attractors and chaotic regimes.

Of course, various limiting cases and first of all the case of vanishing
viscosity suggest to us different ways for searching chaotic flow regimes.
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8 Asymptotics of vanishing viscosity and turbulence.

It cannot be even doubted that the problem of fluid motion at very low viscos-
ity (i.e. very large Reynolds numbers) is the central one in hydrodynamics.
All the problems discussed above are its more or less essential parts.

Problem 11a. Prove (or disprove) that for ν → 0 a solution to the
Navier-Stokes system in a bounded domain D ⊂ Rm with a fixed rigid bound-
ary (v|∂D = 0) and assigned initial velocity field (v|t=0 = v0(x)) approaches
the solution to the Euler equations with the same initial condition and the
boundary condition (vn|∂D = 0) .

Assume that the data of the problem,namely ∂D, v0, and exterior mass
force (if it is present) are C∞-smooth.

Of course, it should be specified, what kind of passage to the limit is
in use here. Is this uniform convergence on an arbitrary interior subdomain?
Or convergence in mean, in the norm Lp(D)? Or ,may be, in some measure?..
So far it is hard to state any reasonable conjecture regarding this matter.

The main difficulty here is related to the presence of a rigid wall. Even
in the two-dimensional case, where we have strong existence theorems for
the Navier-Stokes equations as well as for the Euler equations, the situation
is completely unclear. If there is no boundary, say, in the case of spatially-
periodic flows (equations on torus T 2), or there are “soft” boundary condi-
tions: vn|∂D = 0, ∇× v|∂D = 0, then everything is fine [41]: passage to the
limit as ν → 0 is justified by using the integral estimates of vorticity.

The other complicated case is when the initial velocity field has a disconti-
nuity on some curves. The case of weak discontinuity, when the velocity and
hence the pressure are continuous and only the vorticity jump takes places,
can be analyzed fairly well. The point is that in a fluid without a bound-
ary, when the initial conditions are smooth, there are no boundary layers at
all,and in the cases of a weak discontinuity or “soft” boundary conditions,
boundary layer equations are linear and admit an explicit solution. It is also
very important that we know in advance, where this boundary layer is forming
- along the whole boundary (in the case of the soft boundary conditions) or
along the whole weak discontinuity curve. On curves of strong discontinuity
and on rigid walls, boundary layers are described by the Prandtl equations,
which are nonlinear and cannot describe flow near the whole rigid boundary
or the whole curve of strong discontinuity. The fundamental obstacle here is
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the separation of a boundary layer.
Let me notice that on a fluid free boundary the boundary layer is also

weak and linear. (See [43,44] on the results of V.A.Batischev, V.V.Puhnachev,
L.S.Srubschik). However, we are still far from the rigorous theory here be-
cause of the fundamental difficulties related to the existence theorems.

Problem 11b. Determine the limit of a stationary solution to the
Navier Stokes system as ν → 0. In particular, find asymptotics of the sta-
tionary flow of a viscous fluid past a rigid body.

Besides difficulties related to separation of the boundary layer, in sta-
tionary ( and periodic in t) problems we encounter the other serious difficulty
in the determination of the limiting flow regime. The stationary Euler equa-
tions have infinitely many stationary solutions, and the question is which of
them is the limiting one for the prescribed initial conditions. Things get even
more complicated since we do not know beforehand the smoothness degree of
this limiting stationary regime. If it is discontinuous, the location and nature
of discontinuities also have to be determined.

Furthermore, the question on stability of these stationary regimes nat-
urally arises. They are most likely unstable at large Reynolds numbers.
However, fluid-dynamicists used to assume optimistically that the asymp-
totics is still valid for those moderate Reynolds numbers, at which stability
is preserved. One can say in addition,that arising self-oscillatory regimes,
at slightly supercritical Reynolds numbers, remain so close to the stationary
flow, that integral characteristics, say the resistance force, differ very little
from their stationary values.

Problem 11c. Determine the average velocity field in developed turbu-
lence as ν → 0 (Re→∞), and calculate correlations

〈v(x′, t)⊗ v(x′′, t)〉,

i.e. the average values of all possible products of the velocity field components
at the prescribed time t in the points x′ and x′′ of the flow domain. Determine
also correlation functions corresponding to the distinct times t′ and t′′

〈v(x′, t′)⊗ v(x′′, t′′)〉.

A huge amount of literature is devoted to this problem [46] ( see also
recent review [47]). However, all existing turbulence theories without excep-
tion are based on hydrodynamics equations only to some rather small extent.
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In any case, all of them include some hypotheses that are not derived from
the Navier-Stokes equations, and even possibly contradict them. It is worth
noticing that some of these theories predict the average velocity field quite
well. For instance, it is hardly an accidental coincidence that the calculated
in [49] average profile of turbulent Couette flow in a channel is the same as
the one obtained experimentally. However,I suppose, no one theory manages
to predict more complicated flow characteristics, beginning with second or-
der correlation functions, not to mention the higher orders. I do not have a
sufficiently clear answer to the inevitably arising question on the exact type
of averaging that we should bear in mind while stating the problem 11c. The
most common ones are averaging with respect to time and with respect to
an invariant measure on a phase space of a system. In the case of ergodicity
these two types of averaging are the same. While pressing for the theoretical
results to coincide with the experimental data, we shall probably need to take
into account that a measuring device makes some kind of spatial averaging
over a small region.

However, against all the odds I believe that the consecutive theory of
developed turbulence, which describes flows with very low viscosity, can be
and will be built. It is not inconceivable that this theory will bifurcate into
several branches. Probably, we will have to describe differently the turbulent
flows in pipes, turbulent convective flows and Couette-Taylor flows, turbulent
flow past a body etc. That is true, the lack of a general theory leads to
much more branching. Almost every flow needs to be considered separately,
introducing every time new ad hoc hypotheses. So far the problem is to
construct the asymptotics for at least one particular case.

Sometimes experiments provide us with so beautiful and clear results
that it is a shame on theorists that they cannot interpret them. For instance,
for the Couette-Taylor flow between two cylinders (when the exterior cylinder
is fixed) Taylor obtained (1923) the expression for the azimuthal velocity

vθ =
c

r
, which is valid everywhere except narrow boundary layers (see [48]).

It is quite remarkable that Taylor’s vortices, which have lost their stability
long ago, come alive once again for very large Reynolds numbers. Apparently,
they survive (stay stable) for arbitrary large Reynolds numbers. An excellent
review on turbulent Taylor vortices is presented in [45]. A large number
of simple and explicit relations has been also discovered in experiments on
Bénard’s convection in a horizontal fluid layer. I believe that the problem



32

of rigorous mathematical interpretation of these phenomena and patterns is
not hopeless.

There is no reason to expect uniqueness in the problems 11b and 11c. It
is quite possible that there exist several stationary regimes having different
asymptotical behavior at vanishing viscosity. In fact, this is the case for
the Couette flow between two rigid spheres as well as for Karman’s flow
between rotating planes. There exist some other turbulent regimes along
with Taylor’s turbulent vortices,and moreover the former themselves are not
uniquely defined for given boundary conditions (their axial wave numbers
varies).

In conclusion of this section, I would like to emphasize that it was the de-
veloped turbulence,at the limit of vanishing viscosity,that we discussed here.
Ideally, the transition theory for moderate Reynolds numbers must describe
all possible types of flow regimes, the conditions of their births and deaths
while moving along parameters, and also provide us with the methods to
compute them. It seems impossible to predict without particular calcula-
tions, what sequence of transitions will be realized in a prescribed situation.
The theory must teach researchers rather the rules, according to which flow
regimes are replaced with others, and the methods for the calculation of var-
ious regimes. Of course, it is very important to learn how to formulate the
right questions and to point out the quantities that need to be calculated
first of all. One would say that this theory will more resemble traffic regula-
tions than a train schedule. Although, I suppose, we have good chances that
asymptotic methods will enable us to predict even the transition sequences
in various limiting cases.
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Let me conclude this paper with some small edification for a young
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researcher who intends to start solving one or another of the problems dis-
cussed here. All fore-quoted authors (and the present author is of course not
an exclusion ) have never resolved these fundamental problems. Therefore
one should study their works with care not allowing to carry oneself along a
hopeless way.
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